
I. INTRODUCTION

The concept of Fuzzy sets was initially investigated by
Zadeh [13] as a new way to represent vagueness in
everyday life.  Subsequently, it was developed by many
authors and used in various fields.  To use this concept in
Topology and  Analysis, several researchers have defined
Fuzzy metric space in various ways. In this paper we deal
with the Fuzzy metric space defined by Kramosil and
Michalek [8] and modified by George and  Veeramani [4].
Recently, Grabiec [5] has proved fixed point results for Fuzzy
metric space. In the sequel, Singh and Chauhan [10]
introduced the concept of compatible mappings in Fuzzy
metric space and proved the common fixed point theorem.
Jungck et. al. [6] introduced the concept of compatible maps
of type (A) in metric space and proved fixed point theorems.
Cho [2, 3] introduced the concept of compatible maps of
type (α) and compatible maps of type (β) in fuzzy metric
space. In 2011, using the concept of compatible maps of
type (A) and  type (β), Singh et. al. [11, 12] proved fixed
point theorems in a fuzzy metric space.

In this paper, a fixed point theorem for six self maps
has been established using the concept of absorbing maps.

For the sake of completeness, we recall some definitions
and known results in Fuzzy metric space.

II. PRELIMINARIES
Definition 2.1. [9]  A binary operation * : [0, 1] × [0, 1]

→ [0, 1] is called a t-norm  if ([0, 1], *) is an abelian
topological monoid with unit 1 such that a * b < c *d

whenever a < c   and b < d for a, b, c, d [0,1].∈
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Examples of t-norms are a * b = ab and a * b
= min{a, b}.

Definition 2.2. [9]  The 3-tuple (X, M, *) is said to be a
Fuzzy metric space if X is an arbitrary set, * is a continuous

t-norm and M is a Fuzzy set in X2 × [0, )∞  satisfying the

following conditions :

for all x, y, z X∈ and s, t > 0.

(FM-1) M(x, y, 0) = 0,

(FM-2) M(x, y, t) =1  for all t > 0  if and only if
x = y,

(FM-3) M(x, y, t) = M(y, x, t),

(FM-4) M(x, y, t) * M(y, z, s) < M(x, z, t + s),

(FM-5) M(x, y, .) : [0, ) [0,1]∞ →  is left

continuous,

(FM-6) lim
t→∞ M(x, y, t) =1.

Note that M(x, y, t) can be considered as the degree of
nearness between x and y with respect to t.  We identify
x = y with M(x, y, t) = 1  for all t > 0. The following example
shows that every metric space induces a Fuzzy metric space.

Example 2.1. [9] Let (X, d) be a metric space.  Define

a*b = min  {a, b} and M(x, y, t) = ( , )

t

t d x y+  for all x, y ∈

X  and all t > 0.  Then (X, M, *) is a Fuzzy metric space.  It
is called  the Fuzzy metric space induced by d.

Definition 2.3. [9]  A sequence {xn}  in a Fuzzy metric
space  (X, M, *) is said to be  a Cauchy sequence if and

only if for each ε  > 0, t > 0, there exists 0n N∈ such that

M(xn, xm, t) > 1 – ε  for all n, m > n0.
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The sequence {xn} is  said to converge  to a point x in

X if and only if  for each ε  > 0, t > 0 there exists 0n N∈
such that M(xn, x, t) > 1 – ε  for all n > n0.

A Fuzzy metric space (X, M, *) is said to be complete if
every  Cauchy  sequence in it converges to a point in it.

Definition 2.4. [11]  Self mappings A and S of a Fuzzy
metric space (X, M, *)  are said to be weak compatible  if
they commute at their coincidence  points.

Definition 2.5. Suppose A and B be two self mappings
on a Fuzzy metric space (X, M,*), then A is called B-absorbing
if there exists a positive R > 0 such that M(Bx, BAx, t) >
M(Bx, Ax, t/R) for all .x X∈  Similarly, B is called
A-absorbing if there exists a positive R > 0 such that
M(Ax, ABx, t) > M(Ax, Bx, t/R) for all .x X∈

Now, we give an example which shows that absorbing
map need not commute at their coincidence points.

Example 2.2. Let X = [0, 2] be a metric space and d and
M are same as in Example 2.1.  Define A, B : X → X by

2 if  2

0 if 2

x
Ax

x

≠
=  =

and Bx = 2 for .x X∈

Then the map A is B-absorbing for any R > 2 but the
pair of maps (A, B) are not commute at their coincidence
point x = 0.

Definition 2.6. Self mappings A and S of a Fuzzy metric
space (X, M, *) are said to be any kind of coincidentally
commuting mappings if and only if there is a sequence {xn}
in X satisfying

lim lim ,n n
t t

fx gx u
→∞ →∞

= =  for some u X∈  and fgu = gfu

at this point.

Example 2.3. Let (X, M, *) be a Fuzzy metric space,
where X = [0, 2] with  a t-norm defined by a * b =
min{a, b} for all a, b ∈ X and

,  if 0
| |( , , )

0              , if 0

t
t

t x yM x y t

t

 > + −= 
 =

 for all , .x y X∈

Define f, g : [0, 2] →  [0, 2] by

2,  if [0,1]
( )

,  if (1, 2]
2

x
f x x

x

∈
=  ∈

and

2,  if [0,1]
( ) 3

,  if (1,2]
5

x
g x x

x

∈
= + ∈

Consider the sequence {xn} =
1

2 .
2n

 −  
 Clearly

f(1) = g(1) = 2 and f(2) = g(2) = 1.

Also fg(1) = gf(1) = 1 and fg(2) = gf(2) = 2. Thus, f and
g are weakly compatible mappings.

Now
1

1
4nfx

n
 = −  

 and
1

1 .
10ngx

n
 = −  

Therefore, fxn → 1, gxn → 1, fg(xn) = 2, gf(xn) =

4 1

5 20n
 −  

 and lim ( , , )n n
n

M fgx gfx t
→∞  =

1,
6
5

t

t
≠

+ so f and g

are not compatible maps on X but they are any kind of
coincidentally commuting mappings.

Remark 2.1. The above example shows that weakly
compatible mappings are also any kind of coincidentally
commuting mappings.

Lemma 2.1. [5] Let (X, M, *) be a fuzzy metric space.
Then for all x, y ∈ X, M(x, y, .) is a non-decreasing function.

Lemma 2.2. [1] Let (X, M, *) be a fuzzy metric space.
If there exists k ∈  (0, 1) such that for all x, y ∈ X,

M(x, y, kt) > M(x, y, t) ∀ t > 0

then x = y.

Lemma 2.3. [12] Let {xn} be a sequence in a fuzzy
metric space (X, M, *). If there exists a number k ∈ (0, 1)
such that

M(xn+2, xn+1, kt) > M(xn+1, xn, t) ∀ t > 0 and n ∈ N.

Then {xn} is a Cauchy sequence in X.

Lemma 2.4. [7] The only t-norm * satisfying r * r > r
for all r ∈  [0, 1] is the minimum t-norm, that is

a * b = min{a, b} for all a, b ∈  [0, 1].

III. MAIN RESULTS
Theorem 3.1. Let (X, M, *) be a complete Fuzzy metric

space with continuous t-norm defined by a * b = min{a, b}
where a, b ∈  [0, 1] and let A, B, S, T, P and Q be mappings
from X into itself such that the following conditions are
satisfied :

(a) P(X) ⊂ ST(X), Q(X) ⊂ AB(X);

(b) There exists q ∈  (0, 1) such that for every x, y ∈ X
and t > 0

M(Px, Qy, qt) > min{M(ABx, STy, t), M(Px, ABx, t),

M(Qy, STy, t), M(Px, STy, t)};

(c) for all x, y ∈ X, lim
t→∞ M(x, y, t) = 1;

(d) AB = BA, ST = TS, PB = BP, QT = TQ;
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(e) Q is ST-absorbing.

If the pair of maps (P, AB) is reciprocal continuous and
semi-compatible maps then P, Q, S, T, A and B have a unique
common fixed point in X.

Proof : Let x0 ∈ X. From (a) there exist x1, x2 ∈ X
such that

Px0 = STx1 and Qx1 = ABx2.

Inductively, we can construct sequences {xn} and {yn}
in X such that

Px2n-2 = STx2n-1 = y2n-1 and

Qx2n+1 = ABx2n = y2n  for n = 1, 2, 3, ... .

By using contractive condition (b), we obtain

M(Px2n, Qx2n+1, qt) > min{M(ABx2n, STx2n+1, t), M(Px2n,
ABx2n, t), M(Qx2n+1, STx2n+1, t), M(Px2n, STx2n+1, t)}

min{M(y2n, y2n+1, t), M(y2n+1, y2n, t), M(y2n+2, y2n+1, t),
M(y2n+1, y2n+1, t)}

> min{M(y2n, y2n+1, t), M(y2n+1, y2n+2, t)}.

From lemma 2.4, we have

M(y2n+1, y2n+2, qt) > M(y2n, y2n+1, t).

Similarly,  we have

M(y2n+2, y2n+3, qt) > M(y2n+1, y2n+2, t).

Thus, we have

M(yn+1, yn+2, qt) > M(yn, yn+1, t) for n = 1, 2, ...

M(yn, yn+1, t) > M(yn, yn+1, t/q) > M(yn–2, yn–1, t/q2)

... ... ... ...

> M(y1, y2, t/qn) → 1as ,n → ∞

and hence M(yn, yn+1, t) → 1 as n → ∞ for any t > 0.

For each ε > 0 and t > 0, we can choose n0 ∈ N such
that

M(yn, yn+1, t) > 1 – ε  for all n > n0.

For m, n ∈ N, we suppose m > n. Then we have

M(yn, ym, t) > M(yn, yn+1, t/m – n) * M(yn+1, yn+2, t/m – n)
* ... * M(ym–1, ym, t/m – n)

> (1 – ε ) * (1 – ε ) * ... * (1 – ε ) (m – n) times

> (1 – ε )

and hence {yn} is a Cauchy sequence in X.

Since (X, M, *) is complete, {yn} converges to some
point z ∈ X. Also its subsequences converges to the same
point i.e. z ∈ X.

i.e., {Qx2n+1} → z and {STx2n+1} → z ... (1)

{Px2n} → z and {ABx2n} → z ... (2)

Since the pair (P, AB) is reciprocally continuous mapping

then we have lim
n→∞ PABx2n = Pz and lim

n→∞ ABPx2n = ABz.  And

semi-compatibility of  (P, AB) gives lim
n→∞ ABPx2n → ABz

therefore Pz = ABz.

We claim Pz = ABz = z.

Step 1. Put x = z and y = x2n+1 in (e), we have

M(Pz, Qx2n+1, qt) > min{M(ABz, STx2n+1, t),
M(Pz, ABz, t), M(Qx2n+1, STx2n+1, t), M(Pz, STx2n+1, t)}.

Taking n → ∞ and using equation (1), we get

M(Pz, z, qt) > min{M(z, z, t), M(Pz, z, t), M(z, z, t),
M(Pz, z, t)}

i.e. M(Pz, z, qt) > M(Pz, z, t).

Therefore, by using lemma 2.2, we get

Pz = z.

Therefore, ABz = Pz = z.

Step 2. Putting x = Bz and y = x2n+1 in condition (e), we
get

M(PBz, Qx2n+1, qt) > min{M(ABBz, STx2n+1, t),
M(PBz, ABBz, t), M(Qx2n+1, STx2n+1, t), M(PBz, STx2n+1, t)}

As BP = PB, AB = BA, so we have

P(Bz) = B(Pz) = Bz and

(AB)(Bz) = (BA)(Bz) = B(ABz) = Bz.

Taking n → ∞ and using (1), we get

M(Bz, z, qt) > min{M(Bz, z, t), M(Bz, Bz, t), M(z, z, t),
M(Bz, z, t)}

i.e. M(Bz, z, qt) > M(Bz, z, t).

Therefore, by using lemma 2.2, we get

Bz = z

and also we have

ABz = z

=> Az = z.

Therefore, Az = Bz = Pz = z. ... (4)

Step 3.  As P(X) ⊂ ST(X), there exists u ∈ X such
that

z = Pz = STu.

Putting x = x2n and y = u  in (e), we get

M(Px2n, Qu, qt) > min{M(ABx2n, STu, t), M(Px2n, ABx2n,
t), M(Qu, STu, t), M(Px2n, STu, t)}.

Taking n → ∞ and using (1) and (2), we get

M(z, Qu, qt) > min{M(z, z, t), M(z, z, t), M(Qu, z, t),
M(z, z, t)}

i.e. M(z, Qu, qt) > M(z, Qu, t).

Therefore, by using lemma 2.2, we get

Qu = z.

Hence STu = z = Qu.
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Since Q is ST-absorbing then

M(STu, STQu, t) > M(STu, Qu, t/r) = 1

i.e. STu = STQu => z = STz.

Step 4. Putting x = x2n and y = z in (e), we get

M(Px2n, Qz, qt) > min{M(ABx2n, STz, t), M(Px2n, ABx2n,
t), M(Qz, STz, t), M(Px2n, STz, t)}.

Taking n → ∞ and using (2) and step 3, we get

M(z, Qz, qt) > min{M(z, Qz, t), M(z, z, t), M(Qz, Qz, t),
M(z, Qz, t)}

i.e. M(z, Qz, qt) > M(z, Qz, t).

Therefore, by using lemma 2.2, we get

Qz = z.

So, z = Qz = STz.

Step 5. Putting x = x2n and y = Tz in (e), we get

M(Px2n, QTz, qt) > min{M(ABx2n, STTz, t), M(Px2n, ABx2n,
t), M(QTz, STTz, t), M(Px2n, STTz, t)}.

As QT = TQ and ST = TS, we have

QTz = TQz = Tz and

ST(Tz) = T(STz) = TQz = Tz.

Taking n → ∞ we get

M(z, Tz, qt) > min{M(z, Tz, t), M(z, z, t), M(Tz, Tz, t),
M(z, Tz, t)}

i.e. M(z, Tz, qt) > M(z, Tz, t).

Therefore, by using lemma 2.2, we get

Tz = z.

Now STz = Tz = z implies Sz = z.

Hence, Sz = Tz = Qz = z. ... (5)

Combining (4) and (5), we get

Az = Bz = Pz = Qz = Tz = Sz = z.

Hence, z is the common fixed point of A, B, S, T, P and
Q.

Uniqueness : Let u be another common fixed point of
A, B, S, T, P and Q.

Then Au = Bu = Pu = Qu = Su = Tu = u.

Put x = z and y = u in (e), we get

M(Pz, Qu, qt) > min{M(ABz, STu, t), M(Pz, ABz, t),
M(Qu, STu, t), M(Pz, STu, t)}

Taking n → ∞ we get

M(z, u, qt) > min{M(z, u, t), M(z, z, t), M(u, u, t),
M(z, u, t)}

i.e. M(z, u, qt) > M(z, u, t).

Therefore by using lemma 2.2, we get

z = u.

Therefore  z is the unique common fixed point of self

maps A, B, S, T, P and Q.

Theorem 3.2. Let (X, M, *) be a complete Fuzzy metric
space with continuous t-norm defined by a * b = min{a, b}
where a, b ∈  [0, 1] and let A, B, S, T, P and Q be mappings
from X into itself such that the following conditions are
satisfied :

(a) P(X) ⊂ ST(X), Q(X) ⊂ AB(X),

(b) There exists q ∈  (0, 1) such that for every x, y ∈ X
and t > 0,

M(Px, Qy, qt) > min{M(ABx, STy, t), M(Px, ABx, t),
M(Qy, STy, t), M(Px, STy, t)},

(c) For all x, y ∈ X, lim
t→∞ M(x, y, t) = 1,

(d) AB = BA, ST = TS, PB = BP, QT = TQ,

(e) Q is ST-absorbing.

If the pair of maps (P, AB) is subsequential continuous
and semi-compatible maps then P, Q, S, T, A and B have a
unique common fixed point in X.

Proof. Since reciprocal continuity implies subsequential
continuity, so the proof follows from Theorem 3.1.

Theorem 3.3. Let (X, M, *) be a complete Fuzzy metric
space with continuous t-norm defined by a * b = min{a, b}
where a, b ∈  [0, 1] and let A, B, S, T, P and Q be mappings
from X into itself such that the following conditions are
satisfied :

(a) P(X) ⊂  ST(X), Q(X) ⊂  AB(X),

(b) There exists q ∈  (0, 1) such that for every x, y ∈ X
and t > 0,

M(Px, Qy, qt) > min{M(ABx, STy, t), M(Px, ABx, t),
M(Qy, STy, t), M(Px, STy, t)},

(c) For all x, y ∈ X, lim
t→∞ M(x, y, t) = 1,

(d) AB = BA, ST = TS, PB = BP, QT = TQ,

(e) Q is ST-absorbing.

If the pair of maps (P, AB) is reciprocal continuous and
sub-compatible maps then P, Q, S, T, A and B have a unique
common fixed point in X.

Proof.  Since weak-compatibility implies sub-
compatibility, so the proof follows from Theorem 3.1.

Theorem 3.4. Let (X, M, *) be a complete Fuzzy metric
space with continuous t-norm defined by a * b = min{a, b}
where a, b ∈  [0, 1] and let A, B, S, T, P and Q be mappings
from X into itself such that the following conditions are
satisfied :

(a) P(X) ⊂  ST(X), Q(X) ⊂  AB(X),

(b) There exists q ∈  (0, 1) such that for every x, y ∈ X
and t > 0,

M(Px, Qy, qt) > min{M(ABx, STy, t), M(Px, ABx, t),
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M(Qy, STy, t), M(Px, STy, t)},

(c) For all x, y ∈ X, lim
t→∞ M(x, y, t) = 1,

(d) AB = BA, ST = TS, PB = BP, QT = TQ,

(e) Q is ST-absorbing.

If the pair of maps (P, AB) is subsequential continuous
and occasionally weakly-compatible maps then P, Q, S, T, A
and B have a unique common fixed point in X.

Proof.  Since semi-compatibility implies sub-compatibility,
so the proof follows from Theorem 3.2.

Theorem 3.5. Let (X, M, *) be a complete Fuzzy metric
space with continuous t-norm defined by a * b = min{a, b}
where a, b ∈  [0, 1] and let A, B, S, T, P and Q be mappings
from X into itself such that the following conditions are
satisfied :

(a) P(X) ⊂  ST(X), Q(X) ⊂  AB(X),

(b) There exists q ∈  (0, 1) such that for every x, y ∈ X
and t > 0,

M(Px, Qy, qt) > min{M(ABx, STy, t), M(Px, ABx, t),
M(Qy, STy, t), M(Px, STy, t)},

(c) For all x, y ∈ X, lim
t→∞ M(x, y, t) = 1,

(d) AB = BA, ST = TS, PB = BP, QT = TQ,

(e) Q is ST-absorbing.

If the pair of maps (P, AB) is reciprocal continuous and
weak-compatible maps then P, Q, S, T, A and B have a unique
common fixed point in X.

Proof.  Since weak-compatibility implies sub-
compatibility, so the proof follows from Theorem 3.3.

Theorem 3.6. Let (X, M, *) be a complete Fuzzy metric
space with continuous t-norm defined by a * b = min{a, b}
where a, b ∈  [0, 1] and let A, B, S, T, P and Q be mappings
from X into itself such that the following conditions are
satisfied :

(a) P(X) ⊂  ST(X), Q(X) ⊂  AB(X),

(b) There exists q ∈  (0, 1) such that for every x, y ∈ X
and t > 0,

M(Px, Qy, qt) > min{M(ABx, STy, t), M(Px, ABx, t),
M(Qy, STy, t), M(Px, STy, t)},

(c) For all x, y ∈ X, lim
t→∞ M(x, y, t) = 1,

(d) AB = BA, ST = TS, PB = BP, QT = TQ,

(e) Q is ST-absorbing.

If the pair of maps (P, AB) is sub-sequential continuous
and weak-compatible maps then P, Q, S, T, A and B have a
unique common fixed point in X.

Proof.  Since weak-compatibility implies sub-
compatibility, so the proof follows from Theorem 3.4.

Theorem 3.7. Let (X, M, *) be a complete Fuzzy metric
space with continuous t-norm defined by a * b = min{a, b}
where a, b ∈  [0, 1] and let A, B, S, T, P and Q be mappings
from X into itself such that the following conditions are
satisfied :

(a) P(X) ⊂  ST(X), Q(X) ⊂  AB(X),

(b) There exists q ∈  (0, 1) such that for every x, y ∈ X
and t > 0,

M(Px, Qy, qt) > min{M(ABx, STy, t), M(Px, ABx, t),
M(Qy, STy, t), M(Px, STy, t)},

(c) For all x, y ∈ X, lim
t→∞ M(x, y, t) = 1,

(d) AB = BA, ST = TS, PB = BP, QT = TQ,

(e) Q is ST-absorbing.

If the pair of maps (P, AB) is reciprocal continuous and
occasionally weak compatible maps then P, Q, S, T, A and B
have a unique common fixed point in X.

Proof.  Since reciprocal continuous implies subsequantial
continuity and weak compatibility implies occasionally weak
compatibility, so the proof follows from Theorem 3.5.

Theorem 3.8. Let (X, M, *) be a complete Fuzzy metric
space with continuous t-norm defined by a * b = min{a, b}
where a, b ∈  [0, 1] and let A, B, S, T, P and Q be mappings
from X into itself such that the following conditions are
satisfied :

(a) P(X) ⊂  ST(X), Q(X) ⊂  AB(X),

(b) There exists q ∈  (0, 1) such that for every x, y ∈ X
and t > 0,

M(Px, Qy, qt) > min{M(ABx, STy, t), M(Px, ABx, t),
M(Qy, STy, t), M(Px, STy, t)},

(c) For all x, y ∈ X, lim
t→∞ M(x, y, t) = 1,

(d) AB = BA, ST = TS, PB = BP, QT = TQ,

(e) Q is ST-absorbing.

If the pair of maps (P, AB) is sub-sequential continuous
and occasionally weak-compatible maps then P, Q, S, T, A
and B have a unique common fixed point in X.

Proof.  Since weak-compatibility implies occasionally
weak-compatibility, so the proof follows from Theorem 3.6.

Theorem 3.9. Let (X, M, *) be a complete Fuzzy metric
space with continuous t-norm defined by a * b = min{a, b}
where a, b ∈  [0, 1] and let A, B, S, T, P and Q be mappings
from X into itself such that the following conditions are
satisfied :

(a) P(X) ⊂  ST(X), Q(X) ⊂  AB(X),
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(b) There exists q ∈  (0, 1) such that for every x, y ∈ X
and t > 0,

M(Px, Qy, qt) > min{M(ABx, STy, t), M(Px, ABx, t),
M(Qy, STy, t), M(Px, STy, t)},

(c) For all x, y ∈ X, lim
t→∞ M(x, y, t) = 1,

(d) AB = BA, ST = TS, PB = BP, QT = TQ,

(e) Q is ST-absorbing.

If the pair of maps (P, AB) is reciprocal continuous and
any kind of coincidentally commuting maps then P, Q, S, T,
A and B have a unique common fixed point in X.

Proof.  Since it is clear from Remark 2.1 that weakly
compatible mapping imply any kind of coincidentally
commuting mappings so the proof follows from Thereom
3.5.
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